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Abstract

Compared with single-phase laminar pipe flow, two-phase bubble-train flow shows a significantly increased rate of

mass transfer between liquid and wall. The present work is a study of this effect over a wide range of the governing

variables. The problem has been numerically simulated and experimentally examined using the copper dissolution

method. Furthermore, a mathematical correlation for the Sherwood-number of the system is presented and the

mechanism of transport enhancement is elucidated.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This work is a study of mass transfer in a two-phase

flow regime, known as bubble-train flow. This regime

occurs when large gas bubbles are introduced into a

liquid flowing laminarly through a duct with a small

cross section. Under these circumstances, the bubbles or

droplets adopt a characteristic capsular shape. They al-

most completely fill the cross section of the duct, re-

maining separated from the wall by a thin film of liquid.

Compared with single-phase laminar flow, bubble-

train flow has two characteristics that are potentially

useful: the axial segregation of the bulk liquid signifi-

cantly reduces axial dispersion, while at the same time

inducing a circulating flow pattern in the liquid, which

enhances radial transport.

In the past, these effects have rarely been exploited.

The primary technical application is in automated con-

tinuous-flow analysers, where bubble-train flow is used

to separate samples from each other [1]. The effect of

radial transport enhancement is a common observation

in capillary blood vessels [2], but has not yet found its

way into technical application beyond laboratory ex-

periments. Given the recent interest in microprocess

technology, this may change fundamentally in the near

future: laminar liquid flow through micro-channels is

characteristic of microprocesses and many micro-unit

operations may profit from bubble-train flow.

The systematic exploitation of radial transport en-

hancement by bubble-train flow requires a reliable cor-

relation of the parameters involved to quantify its effect.

Despite the considerable attention given to two-phase

pipe flows, the available literature does not satisfy this

demand. There are several reasons for this shortcoming.

First of all, many authors studied two-phase flow in

pipes with a diameter larger than the capillary limit [3–

6]. It has only recently been established, however, that

the flow patterns observed at such diameters differ sig-

nificantly from bubble-train flow [7].

Secondly, the majority of available studies are de-

voted to heat transfer, where the range of Prandtl-

numbers is smaller by several orders of magnitude than

the corresponding Schmidt-numbers in mass transfer.

The results from heat transfer studies can thus only be

applied to mass transfer by a speculative extrapolation.

Thirdly, none of the previous studies have been

broad enough to form the basis for a generalised cor-

relation. This is hardly surprising, given the large num-

ber of free parameters involved, which results in an

insurmountable task if the necessary data are to be

collected by experiment.
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It is therefore no coincidence that the only attempt at

devising a general model took a purely theoretical ap-

proach: Duda and Vrentas [8,9] studied the flow pattern

and heat transfer in bubble-train flow by solving the

boundary value problem analytically. Besides the geo-

metric simplifications they had to introduce to solve the

partial differential equations, their work suffers the

drawback that their analytical solution takes the form of

a system of implicit infinite series. Evaluating the solu-

tion requires extensive numerical effort, making its use

impractical.

To our knowledge, there is only a single experimental

study to date that directly addresses radial mass transfer

in bubble-train flow. It was conducted by Horvath et al.

[10], who used a tubular reactor to measure mass

transfer. Although limited in scope, the study supplies

some valuable reference data and allows the general

conclusion that the rate of radial mass transfer in bubble-

train flow lies between the values for single-phase lami-

nar and turbulent flow.

In summary, only very little data and no general

correlation of radial mass transfer in bubble-train flow

are available. The objective of the present work is to fill

this gap with a comprehensive study of the problem and

to develop a corresponding correlation. The constraints

placed by limited experimental resources on the scope of

previous studies will be overcome by making extensive

use of a numerical simulation of the problem. Never-

theless, the study will be restricted to capillaries with a

circular cross section, to Newtonian liquids and to a

dilute solute, since a departure from these three con-

straints would require a fundamentally different ap-

proach. And finally, a constant concentration boundary

condition alone will be considered, since the constant

flux condition common in heat transfer problems is very

rarely encountered in mass transfer.

2. Theory

2.1. Defining bubble-train flow

There is some confusion concerning the nomencla-

ture for gas–liquid flow patterns in general and bubble-

train flow in particular. The term ‘‘bubble-train flow’’ is

used by Thulasidas et al. [11,12], while other authors

refer to the same pattern as ‘‘slug-flow’’ [10,13], ‘‘plug-

flow’’ [14] or simply as intermittent flow [15]. Since it is

the most descriptive term, we shall use ‘‘bubble-train

flow’’ to describe a radially symmetrical flow pattern

characterised by a sequence of capsule-shaped bubbles

which almost completely fill the cross section of the duct

and are separated from the wall by a thin liquid film

(Fig. 1).

Nomenclature

Aw surface area of the inner wall of the capillary

(m2)

Bo Bond-number, Bo ¼ Dqgd2
i =r (–)

C molar concentration (kmolm�3)

Ca Capillary-number, Ca ¼ guBr�1 (–)

D Fickian diffusion coefficient (m2 s�1)

di tube diameter (m)

E enhancement factor, Shbubble-trainSh�1
single phase

(–)

EðbÞ distribution density function of bubble

lengths (–)

g gravitational acceleration, g ¼ 9:81 (m s�2)

Gz Graetz-number, d2
i uD

�1l�1 (–)

kL mass transfer coefficient between liquid and

wall (m s�1)

l axial length (m)

_nn00 molar flux (kmolm�2 s�1)

Pe Peclet-number, Pe ¼ udiD�1 (–)

r radial coordinate, 06 r6R (m)

R tube radius (m)

Re Reynolds-number, Re ¼ dium�1 (–)

Sh Sherwood-number, Sh ¼ kLdiD�1 (–)

u volume-average liquid velocity (m s�1)

_VV volume flow rate (m3 s�1)

Greek symbols

b dimensionless distance between bubbles,

b ¼ lplugd�1
i (–)

c dimensionless axial coordinate, c ¼ z=di (–)
d dimensionless thickness of film between

bubble and wall, hd�1
i (–)

� void fraction, � ¼ _VVgas= _VVtot (–)
f dimensionless bubble length, f ¼ lbubbledi�1

(–)

m kinematic viscosity (m2 s�1)

q density (kgm�3)

r surface tension (Nm�1)

General subscripts

bubble in/of a gas bubble

gas in/of the gas phase

liq in/of the liquid phase

plug in/of a liquid plug

w wall

a value at entrance to the capillary

x value at exit from capillary
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Radial symmetry is an important feature of bubble-

train flow and in non-vertical flow it only occurs in tubes

with a sufficiently small inner diameter to ensure a pre-

dominance of surface tension over buoyancy forces. The

upper diameter limit of such tubes, which are referred to

as capillaries, has been estimated by Suo and Griffith

[13] on experimental evidence in terms of the Bond-

number Bo ¼ Dqgd2
i =r as Bo < 0:22. For typical surface

tension values, we find an upper diameter limit of be-

tween 1.5 mm (hydrocarbons) and 4 mm (pure water).

Above this limit, stratification and bypass flows lead to a

significant departure from the flow and transport re-

gimes of bubble-train flow [7]. The present study is

therefore limited to capillary tubes only.

2.2. Dimensional analysis

To reduce the number of free variables of the prob-

lem and enhance the generality of our findings, we shall

express the quantitative analysis of mass transfer in

bubble-train flow in terms of dimensionless groups. We

have chosen the following seven groups:

Sh ¼ kLdi
D

ð1Þ

Re ¼ diu
m

ð2Þ

Sc ¼ m
D

ð3Þ

c ¼ ltube
di

ð4Þ

b ¼ lplug
di

ð5Þ

f ¼ lbubble
di

ð6Þ

d ¼ dfilm
di

ð7Þ

Sh, Re, Sc and c are the groups describing the classical

Graetz–Nusselt problem of single-phase mass transfer in

laminar pipe flow. To extend this set of groups to de-

scribe bubble-train flow, we merely need to include three

dimensionless lengths describing the liquid plugs ðbÞ, the
gas bubbles ðfÞ and the thickness of the liquid film be-

tween bubble and wall ðdÞ. In terms of these dimen-

sionless groups, the objective of this work is to develop a

correlation of the form

Sh ¼ f ðRe; Sc; c; b; d; fÞ ð8Þ

The choice of groups requires comment in several re-

spects. First of all, we have decided to include the film

thickness directly as a parameter instead of expressing it

indirectly by a correlation of the Capillary-number Ca
[16–18], since the principle tool of this study will be a

numerical simulation in which the film thickness can be

set explicitly. In doing so, we also tacitly assume a rigid

bubble-shape independent of Ca, which seems justified

by our observation that the moderate distortion of the

rear meniscus of the bubble at higher flow velocities does

not affect the rate of mass transfer between liquid and

wall noticeably.

Secondly, the definition of the liquid mass transfer

coefficient kL in the Sherwood-number requires expla-

nation. It is defined as the ratio of solute flux to driving

concentration gradient

kL ¼ _nn00

DC
ð9Þ

where the concentration gradient is customarily defined

either as a local, an arithmetic mean or a logarithmic

mean value. Since it follows naturally from a shell bal-

ance, we will use the log-mean gradient:

DC ¼ ðCw;a � CaÞ � ðCw;x � CxÞ
ln

Cw;a�Ca

Cw;x�Cx

� � ð10Þ

Furthermore, the introduction of a second phase which

is opaque to mass transfer introduces an ambiguity into

the definition of _nn00. It can either be defined as before as

the flux per overall wall area

_nn00 ¼
_VVliqðCa � CxÞ

Aw

ð11Þ

or as the flux per surface area contacted by the plugs:

_nn00 ¼
_VVliqðCa � CxÞ
ð1� �ÞAw

¼
_VVtotðCa � CxÞ

Aw

ð12Þ

where � ¼ _VVgas= _VVtot is the void fraction of the flow. The

rationale of this definition is that mass transfer from the

film is negligible and thus only the surface between

the liquid plugs and the wall actively participates in mass

transfer.

Fig. 1. Photography of bubble-train flow consisting of air bubbles in water flowing through a 1.2 mm glas capillary. The capillary is

submersed in water to reduce refraction.
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Both definitions have their merit. By using Eq. (12),

we obtain a Sherwood-number Shplug that describes the

rate of mass transfer from an individual plug. As

Horvath et al. [10] point out, Shplug thus conveys infor-

mation about the relative magnitude of convective and

diffusive transport in the liquid. On the other hand, us-

ing Eq. (11) results in a Sherwood-number Shprocess that
represents the rate of mass transfer in the flow as whole

and can be used directly in a global mass balance over

the capillary.

Since in this study bubble-train flow is viewed as a

means to enhance a mass transfer process, it would seem

obvious to study the results in terms of Shprocess. We shall

not do so, however, for the following reason: it will be

shown that the bubble length does not affect the inten-

sity of mass transfer from an individual plug. By anal-

ysing the results in terms of Shplug we can therefore

neglect f which reduces the parameter domain by one

dimension. Therefore the results of this study will be

analysed in terms of Shplug using the following definition:

Shplug ¼
kL;lmdi
D

¼
_VVtotdiðCa�CxÞ

AwD
ðCw;a�CaÞ�ðCw;x�CxÞ

ln
Cw;a�Ca
Cw;x�Cx

� � ð13Þ

By introducing Cw;a ¼ Cw;x ¼ 0 and

Gztot
4

¼
_VVtotdi
AwD

ð14Þ

where Gztot is the Graetz-number of the two-phase flow,

we obtain:

Shplug ¼
Gztot
4

ln
Ca

Cx

� �
ð15Þ

The analysis can later be extended to Shprocess by simple

multiplication:

Shprocess ¼ Shplugð1� �Þ ð16Þ

Finally, it is also useful to express the enhancement of

mass transfer in bubble-train flow in relation to single-

phase mass transfer in terms of a process-enhancement

factor E:

Eprocess ¼
Shprocess

Shsingle phase

ð17Þ

where both Sherwood-numbers refer to the same volu-

metric liquid flow rates. E is useful, since Eprocess > 1 is a

straightforward criterion for process enhancement 1 by

bubble-train flow.

3. Experimental and computational study

The development of a correlation for the Sherwood-

number of bubble-train flow involves two steps. First, a

comprehensive data set comprising Sh over a wide range

of parameters is created. Then, a mathematical expres-

sion for the correlation is developed and the free pa-

rameters of this model are determined by fitting the

equation to the data set.

Classically, the first step is accomplished by a set of

experiments. In the present case, however, the problem

has six governing dimensionless variables, each with a

wide range of values. Sampling this domain with a rea-

sonable resolution would require an unfeasible experi-

mental effort. Instead, the problem of data generation

was tackled by numerical simulation, which lends itself

very well to the kind of automated execution required

here. In order to verify the simulations, a limited set of

experiments were performed as well.

In spite of the principle suitability of commercial

CFD-tools to generate a large data set describing the

problem, it soon became clear that the greater efficiency

of custom-written code was required to finish the task in

reasonable time. To avoid reinventing the wheel in doing

so, the following hybrid approach was developed. The

commercial CFD-package Flow 3D (Flow Science, Los

Alamos, USA) was used to solve the Navier–Stokes

equations and determine the velocity field of the flow.

Then a custom-written tool was developed to solve the

conservation equation for the solute, based on the pre-

computed velocity data. The custom solver was written

in Matlab (The Mathworks, Natick, MA, USA). In

order to minimise the required number of Flow 3D jobs,

the velocity data were cut into characteristic regions and

reassembled with varying bubble and plug lengths.

Thus, for every value of Re and d, merely one Flow 3D

simulation was required to calculate mass transfer at

arbitrary values of b, c, f and Sc.
For the experimental verification of the simulation,

the copper dissolution method according to Gregory

and Riddiford [19] was chosen. It involves contacting a

copper surface with a solution of sulphuric acid and

potassium dichromate. The dichromate anion acts as an

oxidation agent and oxidises the copper according to the

following over-all equation:

3CuþK2Cr2O7 þ 7H2SO4

! 3CuSO4 þK2SO4 þ Cr2ðSO4Þ3 þ 7H2O ð18Þ

where chromium is reduced from CrðVIÞ to CrðIIIÞ.

Gregory and Riddiford showed the reaction rate to be

determined solely by the rate of mass transfer to the

wall. Thus the log-mean mass transfer coefficient can be

computed directly from the decline in CrðVIÞ. The

method was chosen because of the numerous references

in the literature to its reliability and ease of use.

1 Enhancement implies either treating more liquid to the

same specification or treating the same flow to a higher

specification.
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In single-phase trial runs, however, we observed a

significantly higher rate of mass transfer than predicted

by the well-known solutions to the Graetz–Nusselt

problem. This error could be traced essentially to na-

tural convection induced by the increased density of the

copper-enriched solution near the wall. According to the

original recipe [19], the fresh solution was 1 M in H2SO4

and 30 mM in K2Cr2O7. By using a solution with the

same acidity but 100-fold more dilute in dichromate, the

error could largely be removed [20]. The cause for

the remaining error could not be elucidated. However,

an excellent fit was achieved after refitting the diffusion

coefficient to the experimental data, resulting in D ¼
1:3756� 10�9 m2/s as opposed to D ¼ 0:907� 10�9 m2/s

reported by Gregory and Riddiford [19]. As Newman

[21, p. 304] points out, the effective diffusivity observed

in a chemically complex solution under one set of hy-

drodynamic and geometric conditions is not readily

applicable to exactly the same solution under a different

set of conditions. Gregory and Riddiford determined the

diffusivity in a porous diaphragm cell [22], which differs

in several respects from diffusion in laminar pipe flow. In

this light, the shift in effective diffusivity appears plau-

sible and we have based our analysis on the fitted dif-

fusion coefficient.

3.1. Materials, equipment and procedure

All chemicals were Reagent Grade and were supplied

by Merck KGaA, Germany. The solutions were pre-

pared with deionised tap water. Copper capillaries with

an i.d. of 1 mm and a length of 250 mm were bought

locally. They were certified according to DIN 1787 SF-

Cu to consist of 99.9% pure copper. In order to obtain a

chemically uniform surface, the tubes were prepared for

use by rinsing their lumen with a sequence of acetone,

water, potassium dichromate solution (30 mM dichro-

mate in 1 M sulphuric acid) and water. Each rinse lasted

for 5 min during which a flow rate of approximately 40

ml/min was maintained. After the final rinse, the tubes

were blown dry.

Several methods for creating a steady and defined

flow of bubbles in the capillary were examined. Sur-

prisingly, the methods described in the literature

[7,10,11,23], which essentially involve passing gas and

liquid through a T-connection, did not produce a bub-

ble-train with constant and uniform plug and bubble

lengths. This was probably caused by the smaller capil-

lary diameter used in this study, which increases the

erratic effects of surface tension on bubble formation.

Instead, a new method was developed that proved to

be very reliable. A finely adjustable flow of feed solution

was dispensed via a magnetic three-way valve from a

thin PTFE nozzle (i.d. 0.25 mm) into a funnel. The

liquid was drawn from the spout of the funnel and

pumped through the copper capillary. The three-way

valve periodically interrupted the flow to the funnel,

causing air to be sucked into the capillary and leading to

the formation of bubble-train flow. By precisely timing

the opening and closing of the valve by means of an

electronic switch, the lengths of both the bubbles and

plugs could be adjusted very finely. The method proved

very stable, displaying no measurable drift in bubble and

plug sizes over time.

The following equipment was used (Fig. 2): The feed

solution was pumped from a 2 l glass flask with the aid

of a peristaltic pump (MCP peristaltic drive with a MS/

CA 4-12 head with 12 rollers, Ismatec, Z€uurich, Swit-

zerland). The magnetic valve was manufactured by

Neuberger GmbH (Freiburg, Germany) and was made

of EPDM. The funnel was custom-made of transparent

PMMA, allowing the bubble formation to be observed.

The bubble-train was pumped from the funnel with a

second peristaltic pump, equipped with eight rollers

(Reglo-Analog MS-2/8-160, Ismatec, Z€uurich, Switzer-

land). Since the peristaltic pump ‘‘chops-up’’ the bubble

train flow, it was placed at the outlet of the capillary,

thus operating in suction mode. The tubing used in the

peristaltic pumps was supplied by the pump manufac-

turer and was made of either Tygon� or Viton�. The

funnel was connected to the copper capillary by means

of stainless steel tubing, while the exit of the capillary

was connected to the pump with semitranslucent PTFE-

tubing to allow observation. All connecting tubes had

the same inner diameter as the copper capillary and were

interconnected with PEEK couplings. The feed flask and

the copper tube were placed in a thermostatic basin

which was maintained at 25 �C.
The liquid flow rate was determined volumetrically.

The length of the liquid plugs resulted from the ratio of

the gas and liquid flow rates and was determined by

photographing the flow in the PTFE tubing.

Blank test runs without a copper tube proved that

there was no measurable sink for CrðVIÞ in the system

other than the copper. Furthermore, samples of

peristaltic
pump

samples

copper capillary

.const=ϑ

feed solution

peristaltic pump

funnel

Fig. 2. Schematic representation of the experimental setup.
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dichromate solution were left open to the air for 6 h

without a measurable decline in CrðVIÞ concentration,

proving that no special precautions were required for

sample handling.

Sampling began 10 minutes after starting the bubble-

train flow through the capillary and three samples of 2.5

ml each were drawn at 2 min intervals for every run.

Several runs were performed in one batch. The copper

tubes were replaced after 8 h of operation and no sig-

nificant change in inner diameter was detected.

The results were evaluated using a viscosity of

m ¼ 1:01� 10�6 m2/s [19] and the fitted diffusion coeffi-

cient of D ¼ 1:3756� 10�9 m2/s.

4. Results

4.1. Experimental results and verification of numerical

simulation

An early sensitivity analysis with the aid of the nu-

merical simulation (see Section 4.2) showed that mass

transfer is only weakly connected to the dimensionless

bubble-length f and the dimensionless length of the

capillary c. By contrast, the dependence on Re and di-

mensionless plug length b is strong. We therefore de-

cided to focus on these two variables in the experiments,

which covered the range of Reynolds-numbers from

Re ¼ 10–50 and dimensionless plug lengths from

b ¼ 10–200. In the simulations, a film thickness of

d ¼ 0:5% was chosen as an estimate of the average ex-

perimental film thickness.

In Fig. 3, the experimentally observed relative exit

concentrations are plotted over corresponding simula-

tion results. The correlation between experiment and

simulation is excellent. The standard deviation is

r ¼ 1:4% and the errors are unsystematic.

By contrast, a comparison of the data reported by

Horvath et al. [10] with simulations run with identical

parameters is disappointing (Fig. 3). It shows a sys-

tematic deviation from the numerical results towards

lower rates of mass transfer. In view of the excellent

agreement between our experiments and simulations, we

are inclined to seek the flaw in Horvath�s data.
The potential source of error in the cited data arises

from the enzyme-catalytic method used by the authors.

They base their analysis on the crucial assumption that

the reaction rate in their capillary reactor is entirely

transport-limited. The evidence they cite is based on

previous work [24] in which single-phase mass transfer

was studied. Since, as will be shown, mass transfer in

bubble-train flow is faster by up to an order of magni-

tude than its single-phase counterpart, this evidence of

transport limitation may no longer be sufficient. If the

enzyme-catalysed reaction at the wall introduces an

additional resistance to turnover, this would be most

pronounced at the highest rates of mass transfer which

occur in the shortest liquid plugs, which is supported by

Fig. 3.

Although we could not resolve this issue finally, we

consider the simulations verified on the evidence of their

excellent agreement with our own experiments.

4.2. Sensitivity analysis

Before executing the main set of simulations, the

sensitivity of mass transfer in bubble-train flow to the six

governing free variables was examined by means of

preliminary simulations. The purpose of this analysis

was to focus the simulation work on the essential pa-

rameters and to identify regions of the parameter do-

main that require a higher resolution of samples.

The sensitivity study produced two essential findings.

Firstly, the rate of mass transfer does not depend on Re
and Sc independently but rather on the product of both,

which is the Peclet-number Pe ¼ Re 	 Sc. This grouping is
not surprising, since it is frequently observed in prob-

lems of heat and mass transfer. Secondly, Shplug proved

insensitive to f and to d up to d6 0:01. The latter holds

easily for typical operating conditions, as has been

shown in experimental and theoretical studies of the film

thickness in bubble-train flow [16–18]. The problem was

thus reduced to studying Shplug ¼ f ðPe; b; cÞ.
On the basis of the sensitivity study, the following

domain for the remaining variables was chosen for the

final simulations: Pe ¼ 1600–800000, b ¼ 0:5–600 with

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cω/Cα simulated [–]

C
ω/C

α e
xp

er
im

en
ta

l [
–]

Our experiments
Horvath et al.

Fig. 3. Comparison of simulation and experiment. Our own

experiments ð�Þ coincide very well with the simulations. By

contrast, data reported by Horvath et al. [10] (þ) shows a lower

rate of mass transfer than our results.
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higher resolution at the lower end of the scale and

c ¼ 0–1000. In this way, some 15 000 data points were

generated.

4.3. Presentation of results

The presentation of the four-dimensional data set

obtained in the numerical simulation is not straightfor-

ward. The attempt to present the entire data set as a

nomogram failed, since no suitable factorisation of

Shplug could be found. Since the sensitivity study showed

that Shplug reaches a steady value after entry effects have

subsided, we have plotted Shplug over b and Pe at the

limit of long capillaries (Fig. 4).

From an engineering point of view, bubble-train flow

is a tool for process enhancement. The question thus

arises, under which circumstances a process enhance-

ment factor above unity is achieved. The analysis of the

simulation results in terms of Eprocess is difficult to pre-

sent, since Eprocess ¼ f ðPe; Sc; b; c; fÞ. Fig. 5, however,

captures the characteristics of Eprocess by plotting the

data over the plug length for several bubble lengths at

exemplary values of Pe and at a fixed capillary length of

c ¼ 200.

The analysis of Eprocess brought to light two remark-

able findings. First of all, despite reducing the propor-

tion of the wall actively participating in mass transfer by

adding gas bubbles, it is virtually impossible to reduce

process performance by bubble-train flow, unless very

long bubbles with f > 100 are permitted. Secondly,

Eprocess increases over the capillary length, since Shplug
rapidly reaches a steady value while the single phase

Sherwood-number continues to decrease to Shs ¼ 3:656
[25, p. 165], which is the limit for a fully developed

concentration profile. In other words, the longer the

capillary, the more the process will be enhanced by

bubble-train flow. And thirdly, while Shplug must clearly

approach Shs at the limit of very long liquid plugs, we

were surprised to find a significant effect of bubble-train

flow even at b ¼ 600, which were the longest plugs we

simulated (Fig. 4). A linear extrapolation shows, that the

effect of bubble-train flow on radial mass transfer only

subsides at b 
 1100.

4.4. The mechanism of flux enhancement

Besides the integral data for mass transfer presented

in the previous section, the numerical simulation also en-

ables us to elucidate the mechanism of flux enhancement
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Fig. 4. Shplug for long capillaries ðf ¼ 1000Þ over the dimen-
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by studying the evolving local concentration profiles

during mass transfer.

In Fig. 6, the normalised radial concentration profiles

in bubble-train flow and in the single-phase problem are

compared. The single-phase profiles were calculated

with the approximate solution to the Graetz–Nusselt

problem presented by Skelland [25, p. 160 ff.], while the

bubble-train concentration profile was taken from the

numerical simulation at a position half-way between two

bubbles. Both sets of data were sampled at c ¼ 50, 100,

150 and 200. 2

The single-phase profiles show the expected gradual

decay of the concentration gradient. By contrast, the

normalised concentration gradient in bubble-train flow

remains constant once it has been established and is

steeper than its single-phase counterpart at the same

axial position. It is this steeper concentration gradient

near the wall that causes the enhancement to mass

transfer observed in bubble-train flow.

4.5. Correlation

In devising a mathematical model, there is a choice

between mechanistic and empirical modelling. Although

there is merit in seeking to develop a mechanistic model,

we found this route impractical, for several reasons.

First of all, we were not able to cast the mechanism for

enhanced mass transfer in bubble-train flow identified

above into a handy mathematical framework. This

failure is perhaps not surprising, since it has afflicted the

exact solution of the Graetz–Nusselt problem as well,

which takes the form of a multiple infinite series (see e.g.,

[25, p. 159 ff.]). All attempts at devising mathematically

more wieldy solutions have either used simplifying as-

sumptions that limit the validity of the solution (e.g.,

[26]) or have fitted purely empirical expressions to the

exact solution (e.g., [27,28, p. 363]). Secondly and more

critically, the issue of modelling the gradual exposure of

the liquid plug to active wall area as it enters the capil-

lary and in reverse as it exits from the capillary remains

unresolved. For short plugs, this may not be critical,

since the entry and exit take a short space of time and

can thus be approximated as sudden complete entry and

exit. This study has shown, however, that bubble-train

flow enhances mass transfer appreciably even in very

long plugs with dimensionless lengths in the order of

b > 1000. For long plugs the entry and exit of the plug

would make-up a sizable proportion of the overall

process and cannot be approximated in this way. In view

of these unresolved issues, it seems justified to abandon

the mechanistic approach and take an empirical route to

modelling.

The empirical model we have developed (Eq. (19)) is

a product of three subfunctions. The first two functions

represent the effects of Pe and b respectively and render

Shplug at the limit of very long capillaries. The third

function captures the entry effects which depend in sign

and magnitude on both Pe and b and subside as a decay-

function of c. The model has 12 free parameters which

were determined by fitting them to the results of the

numerical simulation by a least-squares method. They

are summarised in Table 1.

Shplug ¼ a1 	 tanhða2Pea3 þ a4Þ 	 tanhða5b�a6 þ a7Þ
	 ð1� ða8Pe� a9b

a10 � a11Þ 	 e�a12cÞ ð19Þ

The correlation has been fitted to data in the range of

Pe ¼ 1:6� 103 to 4� 105, b ¼ 1–600 and c ¼ 30–1000,

but should be valid for larger values of b and c as well.

Within this range, it reproduces the results of the nu-

merical simulation with an arithmetic mean error of
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Fig. 6. Comparison of the radial concentration profiles in

laminar single-phase and bubble-train flow. The profiles are

plotted for c ¼ 50, 100, 150 and 200. The concentration profile

in bubble-train flow was computed with b ¼ 20 and was ex-

tracted from a position half-way between the bubbles. All

concentrations were normalised.

2 The data were computed using the exemplary values of

Re ¼ 10 and Sc ¼ 1000; the findings hold for other levels of b,
Re and Sc as well.

Table 1

Coefficients for use in Eq. (19)

a1 ¼ 9:6699� 103 a7 ¼ 2:3378� 10�3

a2 ¼ 6:1743� 10�4 a8 ¼ 9:0380� 10�7

a3 ¼ 5:9852� 10�1 a9 ¼ 6:5869� 10�2

a4 ¼ 1:1468� 10�1 a10 ¼ 4:6481� 10�1

a5 ¼ 1:8897� 10�2 a11 ¼ 1:3620� 10�2

a6 ¼ 4:6692� 10�1 a12 ¼ 2:8882� 10�2
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�10% and a maximum error of generally not more than

�20%.

Eq. (19) is applicable to a single liquid plug or a

complete flow with uniform plug lengths. Under tech-

nical conditions, however, bubble-train flow will typi-

cally encompass a spread of plug and bubble sizes. It is

therefore useful to extend Eq. (19) accordingly. Since the

sensitivity analysis showed Shplug to be independent of

the bubble length, the extension of Eq. (19) merely in-

volves taking account of a spread of plug lengths.

Typically, a distribution of plug lengths is described

by means of a distribution density function EðbÞ, where

EðbÞdb is the volume-fraction of all plugs flowing

through the system that have dimensionless length be-

tween b and b þ db. 3 Then the cup-mixing exit con-

centration is

C ¼
Z 1

0

CðbÞEðbÞ db ð20Þ

By introducing Eq. (20) into Eq. (13) we find the Sher-

wood-number for stochastic bubble-train flow:

Sh ¼ Gztot
4

ln
Ca

Cx

� �
¼ Gztot

4
ln

CaR1
0

CðbÞEðbÞ db

 !
ð21Þ

We may express CðbÞ in terms of Shplug as defined by Eq.

(19) by solving Eq. (13):

CðbÞ ¼ Ca exp

�
� 4ShðbÞ

Gztot

�
ð22Þ

By inserting Eq. (22) into Eq. (21), we finally obtain the

Sherwood-number for stochastic bubble-train flow,

which can be evaluated numerically:

Sh ¼ �Gztot
4

ln

Z 1

0

exp

��
� 4Shplug

Gztot

�
EðbÞ db

�
ð23Þ

5. Conclusions

In this work, radial mass transfer in bubble-train flow

through capillary tubes has been studied experimentally

and numerically over a wide range of the governing

variables, with two essential results.

First of all, the understanding of the bubble-train

flow regime has been extended. The enhanced rate of

mass transfer as compared to single phase laminar flow

has been traced to the steeper concentration gradient at

the capillary wall that is caused by the distinctive liquid

flow pattern in bubble-train flow. The degree of en-

hancement has been found to depend strongly on the

liquid Peclet-number and on the length of the liquid

plugs, displaying the sharpest increase for very short

plugs while remaining distinctly noticeable even for the

longest plugs examined. In contrast to single-phase

laminar flow, entry effects in bubble-train flow are brief

and a steady Sherwood-number is rapidly reached.

Secondly, a mathematical correlation has been de-

veloped that predicts the rate of radial mass transfer in

terms of a plug-Sherwood-number with reasonable ac-

curacy.

From an engineering point of view, bubble-train flow

is an attractive means to enhance radial mass transfer

in small ducts and it has been shown to enhance pro-

cess performance under virtually all circumstances. As

Horvath et al. [10] point out, ‘‘the introduction of gas

bubbles into the liquid stream does not create technical

difficulties which would not be well compensated by the

significant increase in radial transport’’. From our own

experience, we can confirm this view. We therefore hope

that this work will contribute to making bubble-train

flow a standard tool for mass transfer enhancement.

References

[1] L.T. Skeggs Jr., An automatic method for colorimetric

analysis, J. Clin. Pathol. 28 (1957) 311–322.

[2] J. Prothero, A.C. Burton, The physics of blood-flow in

capillaries––i. The nature of the motion, Biophys. J. 1

(1961) 565–575.

[3] H.A. Johnson, A.H. Abou-Sabe, Heat transfer and pres-

sure drop for turbulent flow of air–water mixtures in a

horizontal pipe, Trans. Am. Soc. Mech. Eng. 74 (1952)

977–987.

[4] H.A. Johnson, Heat transfer and pressure drop for viscous-

turbulent flow of oil–air mixtures in a horizontal pipe,

Trans. Am. Soc. Mech. Eng. 77 (1955) 1257–1264.

[5] D.R. Oliver, S.J. Wright, Pressure drop and heat transfer in

gas–liquid slug flow in horizontal tubes, Br. Chem. Eng. 9

(1964) 590–596.

[6] D.R. Oliver, A. Young-Hoon, Two-phase non-newtonian

flow––ii. Heat transfer, Trans. Inst. Chem. Eng. 46 (1968)

116–122.

[7] K.A. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, D.L.

Sadowski, Gas–liquid two-phase flow in microchannels,

part i: two-phase flow patterns, Int. J. Multiphase Flow 25

(1999) 377–394.

[8] J.L. Duda, J.S. Vrentas, Steady flow in the region of closed

streamlines in a cylindrical cavity, J. Fluid Mech. 45 (1971)

247–260.

[9] J.L. Duda, J.S. Vrentas, Heat transfer in a cylindrical

cavity, J. Fluid Mech. 45 (1971) 261–279.

[10] C. Horvath, B.A. Solomon, J.-M. Engasser, Measurement

of radial transport in slug flow using enzyme tubes, Ind.

Eng. Chem. Fundam. 12 (4) (1973) 431–439.

3 The exact shape of the distribution density function

depends the method of creating the two-phase flow. For

example, it may adopt a Gauss-distribution, in which case

EðbÞ ¼ 1=ðr
ffiffiffiffiffiffi
2p

p
Þ expð�ðb � bÞ2=2r2Þ, where r2 is the variance

and b is the average dimensionless plug length.

R. Gruber, T. Melin / International Journal of Heat and Mass Transfer 46 (2003) 2799–2808 2807



[11] T.C. Thulasidas, M.A. Abraham, R.L. Cerro, Bubble-train

flow in capillaries of circular and square cross section,

Chem. Eng. Sci. 50 (1995) 183–199.

[12] T.C. Thulasidas, M.A. Abraham, R.L. Cerro, Flow

patterns in liquid slugs during bubble-train flow inside

capillaries, Chem. Eng. Sci. 52 (1997) 2947–2962.

[13] M. Suo, P. Griffith, Two-phase flow in capillary tubes,

J. Basic Eng. 86 (1964) 576–582.

[14] C.A. Damianides, J.W. Westwater, Two-phase flow pat-

terns in a compact heat exchanger and in small tubes, in:

Proceedings of Second UK National Conference on Heat

Transfer, Mechanical Engineering Publications, London,

1988, pp. 1257–1268.

[15] T. Fukano, A. Kariyasaki, Characteristics of gas–liquid

two-phase flow in a capillary tube, Nucl. Eng. Des. 141

(1993) 59–68.

[16] F. Fairbrother, A.E. Stubbs, Studies in electro-endosmo-

sis––iv. The bubble tube method for measurement, J. Chem.

Soc. 1 (1935) 527–529.

[17] R.N. Marchessault, S.G. Mason, Flow of entrapped

bubbles through a capillary, Ind. Eng. Chem. 52 (1960)

79–84.

[18] F.P. Bretherton, The motion of long bubbles in tubes,

J. Fluid Mech. 10 (1961) 166–188.

[19] D.P. Gregory, A.C. Riddiford, Dissolution of copper in

sulphuric acid solutions, J. Electrochem. Soc. 107 (1960) 950.

[20] R.F. Gruber, T. Melin, Mixed convection in the copper

dissolution technique of studying mass transfer, Int. J.

Heat Mass Transfer, doi:10.1016/S0017-9310(03)00011-5.

[21] J.S. Newman, Electrochemical Systems, second ed., Pren-

tice-Hall, Englewood Cliffs, NJ, 1991.

[22] D.P. Gregory, A.C. Riddiford, Transport to the surface of

a rotating disc, J. Chem. Soc. (1956) 3756–3764.

[23] A.M. Barajas, R.L. Panton, The effect of contact angle on

two-phase flow in capillary tubes, Int. J. Multiphase Flow

19 (1993) 337–346.

[24] C. Horvath, A. Sardi, B.A. Solomon, Enzyme reactor

tubes, Physiol. Chem. Phys. 4 (2) (1972) 125–130.

[25] A.H.P. Skelland, Diffusional Mass Transfer, Wiley, New

York, 1974.
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